

UNIVERSITY OF CALIFORNIA SAN DIEGO

Spoiler Recognition as Semantic Text Matching

A Thesis submitted in partial satisfaction of the requirements
for the degree Master of Science

in

Computer Science

by

Ryan Tran

Committee in charge:

Professor Julian McAuley, Chair
Professor Arun Kumar
Professor Jingbo Shang

2023

Copyright

Ryan Tran, 2023

All rights reserved.

iii

The Thesis of Ryan Tran is approved, and it is acceptable in quality and
form for publication on microfilm and electronically.

University of California San Diego

2023

iv

TABLE OF CONTENTS

THESIS APPROVAL PAGE .. iii

TABLE OF CONTENTS ... iv

LIST OF FIGURES ... v

LIST OF TABLES ... vi

LIST OF ABBREVIATIONS ... vii

ACKNOWLEDGEMENTS ... viii

ABSTRACT OF THE THESIS .. ix

INTRODUCTION .. 1

CHAPTER 1 BACKGROUND .. 3

CHAPTER 2 COLLECTING THE DATASET .. 7

CHAPTER 3 EXPERIMENTS ... 12

CHAPTER 4 ERROR ANALYSIS ... 16

CONCLUSION ... 18

REFERENCES ... 19

v

LIST OF FIGURES

Figure 1: Our cross-encoding scheme. A summary is concatenated with a comment then passed
to a Transformer architecture. The final hidden state corresponding to the [CLS] token is passed
to a linear layer to predict Match or Non-match. During test time, each comment is paired with
every summary that belongs to the same show.. ... 4

vi

LIST OF TABLES

Table 1: Dataset statistics. The length is measured after conversion to tokens via BigBird’s
tokenizer.. .. 7

Table 2: Example comments alongside an example summary. The first two comments are
relevant; The first one corresponds to the same episode as the summary while the second does
not, so they are examples of a positive and negative example during recognition training
respectively. The third and fourth comments are irrelevant.. ... 8

Table 3: Test set performance of the relevant/irrelevant auto-labeler. Relevant is labeled as 0 and
irrelevant as 1. For each model, the threshold that resulted in the highest F1 score on the
validation set was chosen and used to compute the test set F1, recall, and precision. The AUC is
computed using the ROC curve.. .. 9

Table 4: Experiment details. The dataset sizes are measured in number of comments. All models
in Setup 2 were trained with the same learning rate and weight decay as Setup 1 except
Nyströmformer. The validation interval specifies the frequency with which models were
evaluated on the validation set during training. .. 12

Table 5: Test set MRR on spoiler recognition dataset. In parentheses is the validation set MRR..
... 14

Table 6: Longformer output on several validation set examples. For the given comment, the first
column represents the rank of the correct episode, the second is the correct episode number, the
third is the episode with the highest score, the fourth is this highest score, and the fifth is the text
of the comment. The score is the positive-class confidence after softmax... 17

vii

LIST OF ABBREVIATIONS

SVM Support vector machine

CNN Convolutional neural network

BiGRU Bidirectional gated recurrent unit

IR Information retrieval

ROC Receiver operating characteristic

AUC Area under the curve

MRR Mean reciprocal rank

viii

ACKNOWLEDGEMENTS

The thesis author would like to thank Canwen Xu and Julian McAuley for their guidance

throughout the project and access to GPU resources.

Chapter 2 contains unpublished material coauthored with Canwen Xu and Julian

McAuley. The thesis author was the primary author of this chapter.

Chapter 3 contains unpublished material coauthored with Canwen Xu and Julian

McAuley. The thesis author was the primary author of this chapter.

ix

ABSTRACT OF THE THESIS

Spoiler Recognition as Semantic Text Matching

by

Ryan Tran

Master of Science in Computer Science

University of California San Diego, 2023

Professor Julian McAuley, Chair

Engaging with a TV show in the age of the Internet often means avoiding show-related

content for months out of fear of being spoiled. While spoiler detection research shows

promising results for protecting viewers from generic spoilers, these approaches don't actually

solve the problem of users avoiding show-related content during their watch. This is because

what constitutes a spoiler is different depending on where a viewer is in the show, and spoiler

detection on its own is too coarse to capture this complexity. Instead, we propose the task of

spoiler recognition, which seeks to assign an episode number to a spoiler, given a show. We pose

x

this task as semantic text matching and present a dataset of comments and episode summaries for

evaluating model performance. The dataset consists of ~3.1K and ~2.8K manually-labeled test

and validation comments respectively, and over 200K auto-labeled comments for training. We

experimentally demonstrate the utility of this training set and use it to benchmark the

performance of BigBird, Nyströmformer, and Longformer on this task. Specifically, we cross-

encode summaries with comments and examine the mean reciprocal rank scores. Our results find

Longformer to be best suited for this task. We also perform an error analysis to shed some light

on the kinds of challenges spoiler recognition poses. In total, we present this dataset and these

results to facilitate future research into spoiler recognition.

1

INTRODUCTION

With the growth of Internet forums and online social platforms, further accelerated by the

events of the COVID-19 pandemic, never has it been easier to engage with media as part of a

virtual community. These communities can be found everywhere, from large community servers

on Discord to the comment section under videos on popular streaming sites. Many of these

communities are centered around a particular TV show. Because they contain passionate, like-

minded individuals, these communities should in theory be the best places to engage should one

want to say, discuss the events of an episode. However, these discussions are often rife with

spoilers. Unfortunately, this risk often leads viewers to avoid these communities altogether until

they have completely caught up with the show.

 Some websites such as Reddit have built-in functionality allowing users to tag their

content as spoiler. However, for long shows with a large number of episodes, this proves

unsatisfactory: A user could be halfway through a show but will still be afraid to click on spoiler-

tagged content for fear that it might contain spoilers for events later in the show when in reality,

it might pertain to events that the viewer has already seen and with which can engage. Again,

some websites allow users to tag spoilers with more granularity, but it is far from guaranteed that

users will be both accurate and consistent in tagging their content. This highlights the need for

automatic spoiler recognition. Unlike spoiler detection, spoiler recognition aims to match a given

spoiler to an episode number. A spoiler recognition model working hand-in-hand with a spoiler

detection model could provide much more fine-grained protection from spoilers, enabling users

to engage with show-related discussions at their own speed while they are still watching the

show.

1https://www.kaggle.com/datasets/bobotran/tv-show-spoiler-recognition
2https://github.com/bobotran/spoiler-recognition

2

In this work, we consider the setting where the show is known and we would like to

determine the episode to which a comment is referring. Specifically, we pose the problem as a

semantic text matching task between comments and episode summaries. The rest of this paper

details the process by which we scrape the dataset, annotate it, and benchmark the performance

of several language models as cross-encoders on this task. We make both our dataset1 and source

code2 publicly available. To our knowledge, this is the first work to study the task of spoiler

recognition.

3

CHAPTER 1 BACKGROUND

Unlike spoiler recognition, spoiler detection has been addressed by several works in the

literature. Boyd-Graber et al. (2013) collected a dataset from the website TV Tropes where users

tag spoiler content about TV shows. They experiment with fitting binary SVM classifiers to

traditional lexical features as well as hand-designed features such as content length and genre.

Incorporating genre information is a bit of a theme. Chang et al. (2018) designed a deep spoiler

detection model using a CNN-based genre encoder, a BiGRU-based (Cho et al., 2014) sentence

encoder, and a genre-informed attention mechanism. Wroblewska et al. (2021) experimented

with concatenating genre information with the last BERT (Devlin et al., 2019) encoder state for

the “[CLS]” token as well as simply appending the genre information to the input before feeding

to BERT. Wroblewska et al. (2021) also investigated single-sentence classification versus

sequential-sentence classification (Cohan et al., 2019), finding the additional context from

classifying sentences in batch to be helpful. Similar to Boyd-Graber et al. (2013), Wan et al.

(2019) collected a user-annotated spoiler dataset from the book review website Goodreads. They

built a hierarchical attention network (Yang et al., 2016) for spoiler detection, incorporating

additional hand-crafted features. The IMDb spoiler dataset (Misra 2022) is another publicly-

available user-annotated spoiler dataset.

However, none of these datasets contain information matching a spoiler to an episode.

Furthermore, the extra context incorporated by these models, such as genre, are insufficient for

the much finer task of spoiler recognition. Instead, we feed an entire episode summary alongside

the spoiler as a semantic text matching task.

Our setup shares strong similarities with IR systems. IR systems are typically

characterized as retrieving relevant documents from a database given a query. Large-scale IR

4

systems commonly consist of a candidate generation step and a reranking step. The candidate

generation step quickly procures a short list of documents likely to be relevant, often using a

sparse retrieval method such as BM25 (Robertson et al., 2009). The re-ranking step then refines

the ordering, often using a neural re-ranker such as BERT (Dai et al., 2019). For re-ranking,

cross-encoders, which feed the query and document into the model together, are often used over

bi-encoders, which calculate a similarity score between document and query embeddings

computed independently, because cross-encoders are able to model interactions between the

document and query. Some recent work has also suggested that cross-encoders generalize better

to out-of-domain data (Zhan et al. 2022; Rosa et al. 2022).

Figure 1: Our cross-encoding scheme. A summary is concatenated with a comment then passed
to a Transformer architecture. The final hidden state corresponding to the [CLS] token is passed
to a linear layer to predict Match or Non-match. During test time, each comment is paired with
every summary that belongs to the same show.

 In this work, we treat spoiler recognition as ranking episode summaries given a

comment, and we evaluate the performance of different transformer architectures under the

5

cross-encoding scheme. Specifically, we concatenate a summary with a comment and train the

model to predict match or non-match for each pair. Figure 1 illustrates this architecture. During

test time, each comment is paired with every summary that belongs to the same show. We

evaluate three efficient Transformer architectures, and one baseline architecture with this

process.

Since its introduction, the Transformer architecture has found its way into state-of-the-art

models for a wide array of different tasks. Due to the quadratic cost of its self-attention

mechanism, a large number of variations on this architecture have been developed (Ziyaden

2021), and benchmarks evaluating performance on long sequences have been established (Tay et

al., 2020). In particular, Tay et al. (2020) find that no one efficient Transformer design dominates

but rather, the best Transformer architecture in each circumstance is task-specific. Because

episode summaries are long, in this work, we focus on evaluating three efficient Transformer

architectures on the spoiler recognition task: BigBird (Zaheer et al., 2021), Longformer (Beltagy

et al., 2020), and Nyströmformer (Xiong et al., 2021). We choose these models because their

pretrained checkpoints are publicly available so as to enable us to perform fine-tuning.

BigBird is a sparse-attention Transformer where each token attends to a fixed number of

tokens on either side of it, to a fixed number of randomly selected tokens, and to a fixed set of

global tokens (Zaheer et al., 2021). The authors also prove theoretically that BigBird is a

universal approximator of sequence-to-sequence functions and is Turing complete. Longformer

also uses sliding window attention, but eschews random attention and fixed global attention in

favor of user-specified global attention. Furthermore, their global attention uses different key,

query, and value matrices than their local attention. Taken together, this allows task-specific

inductive bias to be added to the model (Beltagy et al., 2020). For our task, we designate all

6

tokens belonging to the comment as global tokens. Nyströmformer, on the other hand, uses the

Nyström matrix approximation method to approximate the full self-attention matrix (Xiong et al.,

2021).

As baselines, we also include evaluations for RoBERTa and BM25. RoBERTa is a

checkpoint of BERT, carefully optimized with different hyperparameters and pretraining

objectives (Liu et al., 2019). Crucially, however, it retains the same 512-token maximum

sequence length limit, so we truncate the summaries to fit the input size. BM25 is a lexical

matching approach to ranking documents by their relevance to a query (Robertson et al., 2009).

It is a bag-of-words approach that does not require training but acts as a strong baseline

regardless (Thakur et al., 2021).

7

CHAPTER 2 COLLECTING THE DATASET

Our dataset consists of 223,773 comments and 496 summaries across 13 TV shows. Each

comment is labeled with a show name and episode number, and each summary is indexed with a

show name and episode number. The summaries were scraped from their respective episode

pages on the website fandom.com. The length of comments is a long-tailed distribution, with the

median length at 19 tokens, as measured by BigBird’s tokenizer, and the 98 th percentile at 172

tokens. As such, comments are truncated at 172 tokens, and summaries over 3920 tokens are

manually trimmed by throwing out less important details. This ensures that any concatenation of

comment and summary will fit into the long-context Transformers we study.

Table 1: Dataset statistics. The length is measured after conversion to tokens via BigBird’s
tokenizer.

 Number Median Length (in BigBird Tokens)

Summaries 496 1537.5

Comments 223,773 19

To prepare the comments, we first scrape 522,991 of them from discussion threads on

Reddit. Threads are a hierarchical discussion format where users reply to each other’s posts, and

each reply increases the indentation level. Top-level comments are comments that are not made

in reply to any other comment. Threads focused around discussion of a particular episode are

hand-picked, and the top-level comments are scraped. We take only top-level comments to

minimize collecting comments that are incomplete thoughts continued from another part of a

conversation. We then remove links and markup elements and apply other cleaning

preprocessing before proceeding.

8

Table 2: Example comments alongside an example summary. The first two comments are
relevant; The first one corresponds to the same episode as the summary while the second does
not, so they are examples of a positive and negative example during recognition training
respectively. The third and fourth comments are irrelevant and were filtered out of the dataset
during the auto-labeling step.

Summary Comments

“…After thinking back to Yor's training, Anya

uses her "killer move" and throws the ball at

Bill. However, the ball hits the ground and

bounces toward Bill, who throws the ball right

back and hits her. Bill and his team were

excited, thinking he was going to get a Stella

Star. However, Henry informs them that they

do not give out Stella Stars for a simple P.E.

game...”

Relevant - Same episode: “Anya: ‘Finisher

strike: Star Catch Arrow!!’ Ball: ‘nah, i don't

really feel like it’ ”

Relevant - Different Episode: “The dog

finally has a name. Borf!”

Irrelevant: “This episode was fun. Just joy

from start to end.”

Irrelevant: “Haven't been this hyped over a

dodgeball game since Hunter x Hunter.”

Comments are grouped by show name and episode number based on the discussion

thread from which they were scraped, but we do not yet consider them labeled at this step. This

is because we found that about half of the comments scraped this way are irrelevant. We take

this time to note the subtle difference in labels at this step compared to spoiler detection. While

spoiler detection classifies text as spoiler or non-spoiler, we at this step look to separate the

irrelevant comments we have scraped from the relevant ones. We define a relevant comment as

one that describes events relevant to the episode (discussion thread) from which it was scraped.

Examples of irrelevant comments are discussions about music, acting quality, personal feelings

about the episode, etc. Table 2 shows some examples. While the first irrelevant comment is

straightforward, the second is a more nuanced example: The episode in question is about

9

dodgeball, but the comment does not discuss any events that occurred in the episode, so it is not

considered relevant.

Because labeling all 522,991 comments as relevant/irrelevant would be extremely time-

consuming, we took a semi-supervised approach: We labeled 11,032 comments and split them

70-20-10 into a small training, validation, and test set to train an auto-labeler. To maximize data

efficiency with this small dataset, we performed prompt-based fine-tuning to train RoBERTa.

Specifically, we followed the methods outlined by Gao et al. (2021). At a high level, Gao et al.

(2021) described a set of techniques for few-shot fine-tuning of pre-trained language models,

including prompt-based fine-tuning with demonstrations and automatic template generation.

Please refer to their paper for details. It is important to note that at this step, summaries are not

concatenated with comments before being fed to the auto-labeler; the auto-labeler predicts

relevant/irrelevant based on the words in the comment alone. This is because the job of the auto-

labeler is to filter out generic irrelevant comments. Unlike recognition, episode-specific context

is not required to perform this task.

Table 3: Test set performance of the relevant/irrelevant auto-labeler. Relevant is labeled as 0 and
irrelevant as 1. For each model, the threshold that resulted in the highest F1 score on the
validation set was chosen and used to compute the test set F1, recall, and precision. The AUC is
computed using the ROC curve.

Name F1 Recall Precision AUC

Standard Fine-tuning 0.7975 0.7845 0.8109 0.9023

Prompt-based Fine-tuning 0.8109 0.8455 0.7790 0.9092

Prompt-based Fine-tuning + Demonstrations 0.8079 0.7825 0.8351 0.9097

Table 3 shows the auto-labeler’s performance on the test set. For each model, the

threshold that resulted in the highest F1 score on the validation set was selected as its operating

10

point and used to compute the test set scores. Although prompt-based fine-tuning with

demonstrations achieved the highest AUC, prompt-based fine-tuning without demonstrations

showed a higher F1 score at its operating point. Furthermore, prompt-based fine-tuning without

demonstrations achieved a significantly higher recall. In this task, relevant is labeled as 0 and

irrelevant as 1, therefore, the recall in this context estimates the probability that an irrelevant

comment is caught. This is more important than precision for our application because we seek to

produce a dataset of relevant comments for training that is as clean as possible, so irrelevant

comments need to be reliably detected. Concurrently, because unlabeled comment data is

plentiful, we suffer no real consequences from a lower-precision auto-labeler throwing out some

relevant comments. Thus, we select the model trained using prompt-based fine-tuning without

demonstrations as our auto-labeler.

These results somewhat differ from the findings of Gao et al. (2021), who found prompt-

based fine-tuning with demonstrations and automatic template generation to be the most

successful. In fact, we also found that handcrafted templates resulted in better accuracy than

generated templates for our application. We theorize that this could be due to the fact that we

trained our auto-labeler with significantly more data than Gao et al. (2021). Our setup is more a

low-shot setting than a few-shot one, and importantly, Gao et al. (2021) found that the gains their

methods offered diminished significantly as the amount of training data made available to the

model increased, thus potentially explaining our results. Regardless, we found that prompt-based

fine-tuning still provided a significant advantage over standard fine-tuning, so we selected the

corresponding model as our auto-labeler.

Using our chosen auto-labeler, the 511,959 unlabeled comments were auto-labeled,

separating 217,881 relevant comments from 294,078 irrelevant ones. Using our test set, we

11

estimate that of the 217,881 comments labeled as relevant, about 14% are actually irrelevant. As

we will demonstrate later, this number is low enough that the auto-labeled comments still serve

as an effective training set for fine-tuning a spoiler recognition model.

To recount, we have 511,959 auto-labeled comments and 11,032 hand-labeled comments.

Among the auto-labeled comments, we have 217,881 relevant comments and among the hand-

labeled we have 5,892. Relevant comments are converted to the spoiler recognition dataset

format by assigning them the episode number of the discussion thread from which they were

scraped. This results in a spoiler recognition dataset with 217,881 comments for training and

5,892 comments for validation and testing. To test the ability of the recognition models to

generalize to unseen shows, the test set is constructed such that it contains 3,105 hand-labeled

comments from 4 shows that are neither in the validation set nor the training set. The remaining

2,787 hand-labeled comments are used for validation.

Acknowledgements

Chapter 2 contains unpublished material coauthored with Canwen Xu and Julian

McAuley. The thesis author was the primary author of this chapter.

12

CHAPTER 3 EXPERIMENTS

As we are treating spoiler recognition as a re-ranking task, we choose the mean reciprocal

rank (Craswell 2009) as our metric of performance. Specifically, for each comment, its match

score with every summary from the same show is computed. The reciprocal rank is the position

of the correct summary in the descending sorted list of match scores. For this task, it is an

appropriate metric since our labeling process assumes that a comment can be relevant to at most

one episode. We discuss this assumption in more detail in the Error Analysis section.

Table 4: Experiment details. The dataset sizes are measured in number of comments. All models
in Setup 2 were trained with the same learning rate and weight decay as Setup 1 except
Nyströmformer. The validation interval specifies the frequency with which models were
evaluated on the validation set during training.

 Setup 1 Setup 2

Training set size 2,229 217,881

Validation set size 558 2,787

Test set size 3,105 3,105

Learning rate 2e-5 2e-5 (Nyströmformer: 1e-5)

Weight decay 1e-2 1e-2 (Nyströmformer: 1e-3)

Validation interval 1 training epoch 576 training steps

Learning rate schedule Reduce on plateau: Divide by 4 after 4 plateau validation epochs

Optimizer AdamW

Batch size 32

In Setup 1, we evaluate the performance of the models on hand-labeled data only. To

achieve this, the original validation set (2787 comments) is divided 80-20 into a new training set

13

and validation set respectively, and the models are fine-tuned on these sets then evaluated on the

original test set.

All models were trained using the AdamW optimizer (Loshchilov et al., 2017) with

learning rate 2e-5, weight decay 1e-2, and batch size 32, with evaluation on the validation set

occurring at the end of each epoch in Setup 1. Training presented an equal ratio of positive and

negative examples to the models. Negatives were sampled randomly from the set of all

summaries with the same show as the comment; we did briefly experiment with mining hard

negatives using BM25 but found that this did not improve performance. We theorize that

sampling negatives from summaries of the same show provides negatives that are already hard

enough. Furthermore, should a mislabeled comment actually be relevant to multiple episodes,

it’s likely that the hardest negatives returned by BM25 for a comment should actually be

positives, and this would deteriorate the quality of the training. Therefore, for the experiments

reported in Table 5, we stick to sampling negatives randomly from within the same show. The

learning rate was divided by 4 if 4 validation epochs went by without the validation MRR

increasing. BM25 was computed with word stemming, stopword removal, and lowercasing. For

all learned models, we use the implementations and pretrained weights made available by

Huggingface Transformers (Wolf et al., 2019). All models were fine-tuned on a single NVIDIA

Geforce RTX 3090, with FP16 automatic mixed precision to save compute. Table 4 summarizes

these experiment details.

In Setup 2, we evaluate the performance of the models fitted to auto-labeled training data

and hand-labeled validation data. With the exception of Nyströmformer, which used a learning

rate of 1e-5 and weight decay 1e-3, all other hyperparameters are the same as in Setup 1. In

14

Setup 2, validation was performed every 576 training steps. Table 5 shows the results on the test

set.

Table 5: Test set MRR on spoiler recognition dataset. In parentheses is the validation set MRR.

 Setup 1 Setup 2

BM25 0.3680 (0.3890) 0.3680 (0.4067)

RoBERTa 0.3103 (0.5463) 0.3499 (0.4514)

BigBird 0.3328 (0.6275) 0.4035 (0.5682)

Nyströmformer 0.3383 (0.5674) 0.4635 (0.5286)

Longformer 0.4271 (0.6557) 0.5820 (0.6365)

Looking at Setup 1 in Table 5, we can see that BM25 provides a strong baseline that

almost no learned model can beat when trained on the manually-labeled data alone. Contrast this

with Setup 2 where all but one learned model, RoBERTa, outperforms BM25. This is to be

expected since the median summary length is about 1500 tokens, but RoBERTa can see at most

512 tokens, so it is missing a great deal of crucial context that the other models have. In fact, all

learned models perform better when trained on the auto-labeled set, with Longformer being the

most capable of taking advantage of the extra training data. Another noteworthy result is the

difference in generalization gap between Setup 1 and Setup 2: The drop from the validation

MRR to the test MRR is much steeper in Setup 1. Granted, the validation scores are not directly

comparable across the two setups because they do not use the same validation set, but the gap

difference still suggests that training on the auto-labeled data results in better generalization.

Taken together, these results make a strong case for the utility of the auto-labeled data, despite its

noisy labels.

15

Comparing the efficient Transformers, we can see that on both setups, Longformer

outperforms Nyströmformer which outperforms BigBird. Interestingly, BigBird achieves a

higher validation score than Nyströmformer in both cases but a lower test score, implying that

BigBird’s attention model does not generalize as well on this dataset. Most striking, however, is

the large gap between Longformer and the rest of the models. We theorize that the consistent

global attention to all of the comment tokens (but not the summary tokens) allows the model to

effectively sift through the summary to find the pertinent sections, making Longformer uniquely

suited to this spoiler recognition task.

Acknowledgements

Chapter 3 contains unpublished material coauthored with Canwen Xu and Julian

McAuley. The thesis author was the primary author of this chapter.

16

CHAPTER 4 ERROR ANALYSIS

This chapter analyzes comments discussing various episodes from two shows in the

validation set, Dr. Stone and Spy x Family. The author would like to warn the reader to proceed

with caution if they have not finished these shows but intend to watch them.

Table 6 lists several challenging comments along with Longformer’s output on them. The

first example refers to a scene where Santa very briefly flies across the sky in the background. It

is treated as unimportant, fantastical garnish on an event from the episode: None of the

characters acknowledge it, so it is understood to have not actually occurred. Thus, the episode 21

summary does not mention it at all. This represents a class of comments that references relevant

but obscure events, which only a recent viewer of the episode might remember. Interestingly, the

score is relatively low, suggesting that the model understands that it is outputting a low-quality

prediction.

The second comment describes an event from the show but references a character from

an entirely different show; it is drawing a comparison between two characters, one of them in the

show, based on physical likeness. The reference is fairly well-known within the community, but

without additional outside information, it would be difficult for the model to understand this

comment beyond just context clues.

The third comment is challenging because it concerns predictions. Comments on ongoing

shows often contain predictions and, if they happen to be right, will likely match better lexically

to the future episode when the events occur than the current episode when they are

foreshadowed/predicted. This is not necessarily a bad thing for the end user, but it poses a

challenge for training and evaluating our models. For this example, it is visually hinted in

episode 11 that the dog has the ability to see the future but not confirmed until episode 13, so the

17

summary for episode 11 does not mention this ability explicitly but the summary for episode 13

does, posing a possible explanation for the model’s behavior.

The last example exposes some of the limitations with our labeling scheme. While the

assessment “Loid is adjusting to be a father” is very relevant to the events of episode 7, it is not

unique to episode 7; it represents a long-running arc for Loid. Therefore, during the labeling

process, marking this comment as “Relevant” was correct but that label is less meaningful in the

context of semantic text matching. Defining a precise way to distinguish “Relevant” from

“Relevant and Unique” is a potential topic for future experiments and works.

Table 6: Longformer output on several validation set examples. For the given comment, the first
column represents the rank of the correct episode, the second is the correct episode number, the
third is the episode with the highest score, the fourth is this highest score, and the fifth is the text
of the comment. The score is the positive-class confidence after softmax.

Rank Correct Prediction Score Comment

23 21 1 0.1031 “Great santa still alive”

1 2 1 0.5822 “Kars the ultimate lifeform is released from

his stone inprisonment !!!!”

1 11 13 0.8801 “I really really want Anya to have a dog she

can communicate with. If she has a pupner

with the ability to predict the future........”

1 7 12 0.8128 “I like that Loid is adjusting to be a father. It

makes it feel more realistic.”

Taken together, these examples give a glimpse into the challenges posed by spoiler

recognition. The hope is that this analysis motivates new lines of work into the study.

18

CONCLUSION

In this work, we defined the task of spoiler recognition and formulated it as a semantic

text matching problem. We scraped a dataset of summaries and comments, and we annotated a

small portion for testing and validation. We used the manually-labeled data to train an effective

auto-labeler that allowed us to procure a medium-sized training set. We demonstrated the utility

of this dataset and benchmarked the performance of three efficient Transformer architectures as

cross-encoders, finding that Longformer is the best-suited for this task. Finally, we performed an

error analysis to identify the challenges posed by this task. We present this dataset and these

results in the hopes that they will drive further research in the study of spoiler recognition.

19

REFERENCES

Beltagy, I., Peters, M. E., & Cohan, A. (2020). Longformer: The long-document transformer.
arXiv:2004.05150v2. https://doi.org/10.48550/arXiv.2004.05150

Cho, K., van Merrienboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural
machine translation: Encoder-decoder approaches. arXiv:1409.1259v2.
https://doi.org/10.48550/arXiv.1409.1259

Cohan, A., Beltagy, I., King, D., Dalvi, B., & Weld, D. (2019). Pretrained language models for
sequential sentence classification. Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), 3693–3699. http://dx.doi.org/10.18653/v1/D19-1383

Craswell, N. (2009). Mean reciprocal rank. Encyclopedia of Database Systems, 1703–1703.
https://doi.org/10.1007/978-0-387-39940-9_488

Dai, Z., & Callan, J. (2019). Deeper text understanding for IR with contextual neural language
modeling. Proceedings of the 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval, 985-988. https://doi.org/10.1145/3331184.3331303

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep
bidirectional transformers for language understanding. arXiv:1810.04805v2.
https://doi.org/10.48550/arXiv.1810.04805

Gao, T., Fisch, A., & Chen, D. (2021). Making pre-trained language models better few-shot
learners. Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), 3816–3830. http://dx.doi.org/10.18653/v1/2021.acl-long.295

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy., O., Lewis, M., Zettlemoyer, L., &
Stoyanov, V. (2019). RoBERTa: A robustly optimized BERT pretraining approach.
arXiv:1907.11692v1. https://doi.org/10.48550/arXiv.1907.11692

Loshchilov, I., & Hutter, F. (2017). Decoupled weight decay regularization.
arXiv:1711.05101v3. https://doi.org/10.48550/arXiv.1711.05101

Misra, R. (2022). IMDB spoiler dataset. arXiv:2212.06034v1.
https://doi.org/10.48550/arXiv.2212.06034

Robertson, S., & Zaragoza, H. (2009). The probabilistic relevance framework: BM25 and
beyond. Foundations and Trends in Information Retrieval, 3(4), 333–389.
https://doi.org/10.1561/1500000019

20

Rosa, G., Bonifacio, L., Jeronymo, V., Abonizio, H., Fadaee, M., Lotufo, R., & Nogueira, R.
(2022). In defense of cross-encoders for zero-shot retrieval. arXiv:2212.06121v1.
https://doi.org/10.48550/arXiv.2212.06121

Thakur, N., Reimers, N., Rücklé, A., Srivastava, A., & Gurevych, I. (2021). BEIR: A
heterogenous benchmark for zero-shot evaluation of information retrieval models.
arXiv:2104.08663v4. https://doi.org/10.48550/arXiv.2104.08663

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham, P., Rao, J., Yang, L., Ruder, S., &
Metzler, D. (2020). Long range arena: A benchmark for efficient transformers.
arXiv:2011.04006v1. https://doi.org/10.48550/arXiv.2011.04006

Wan, M., Misra, R., Nakashole, N., & McAuley, J. (2019). Fine-grained spoiler detection from
large-scale review corpora. Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2605–2610. http://dx.doi.org/10.18653/v1/P19-1248

Wroblewska, A., Rzepinski, P., & Sysko-Romanczuk, S. (2021). Spoiler in a textstack: How
much can transformers help? arXiv:2112.12913v1. https://doi.org/10.48550/arXiv.2112.12913

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf,
R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C.,
Scao, T. L., Gugger, S., Drame, M., Lhoest, Q., & Rush, A. M. (2019). HuggingFace’s
transformers: State-of-the-art natural language processing. arXiv:1910.03771v5.
https://doi.org/10.48550/arXiv.1910.03771

Xiong, Y., Zeng, Z., Chakraborty, R., Tan, M., Fung, G., Li, Y., & Singh, V. (2021).
Nyströmformer: A nyström-based algorithm for approximating self-attention.
arXiv:2102.03902v3. https://doi.org/10.48550/arXiv.2102.03902

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016). Hierarchical attention
networks for document classification. Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, 1480–1489. http://dx.doi.org/10.18653/v1/N16-1174

Zaheer, M., Guruganesh, G., Dubey, A., Ainslie, J., Alberti, C., Ontanon, S., Pham, P., Ravula,
A., Wang, Q., Yang, L., & Ahmed, A. (2020). Big bird: Transformers for longer sequences.
arXiv:2007.14062v2. https://doi.org/10.48550/arXiv.2007.14062

Zhan, J., Xie, X., Mao, J., Liu, Y., Guo, J., Zhang, M., & Ma, S. (2022). Evaluating interpolation
and extrapolation performance of neural retrieval models. arXiv:2204.11447v2.
https://doi.org/10.48550/arXiv.2204.11447

Ziyaden, A., Yelenov, A., & Pak, A. (2021). Long-context transformers: A survey. 2021 5th
Scientific School Dynamics of Complex Networks and Their Applications (DCNA), 215–218.
https://doi.org/10.1109/DCNA53427.2021.9587279

